A Hybrid Rough-Neuro model For Diagnosing Erythemato-Squamous Diseases

نویسنده

  • Shahenda Sarhan
چکیده

In this paper, a Rough-Neuro hybrid methodology of the diagnostic process is proposed as a means to achieve accurate diagnosing of Erythemato-Squamous diseases. The methodology incorporates a two-stage hybrid mechanism. Rough sets Johnson Reducer for reduction of relevant attributes and artificial neural network Levenberg-Marquardt algorithm for the classification of the diseases. The model achieved really good results in the diagnosing process that approached 98.8% diagnosing accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-stage hybrid feature selection algorithms for diagnosing erythemato-squamous diseases

This paper proposes two-stage hybrid feature selection algorithms to build the stable and efficient diagnostic models where a new accuracy measure is introduced to assess the models. The two-stage hybrid algorithms adopt Support Vector Machines (SVM) as a classification tool, and the extended Sequential Forward Search (SFS), Sequential Forward Floating Search (SFFS), and Sequential Backward Flo...

متن کامل

A Novel Hybrid Feature Selection Method Based on IFSFFS and SVM for the Diagnosis of Erythemato-Squamous Diseases

This paper developed a diagnosis model based on Support Vector Machines (SVM) with a novel hybrid feature selection method to diagnose erythemato-squamous diseases. Our hybrid feature selection method, named IFSFFS (Improved F -score and Sequential Forward Floating Search), combines the advantages of filters and wrappers to select the optimal feature subset from the original feature set. In our...

متن کامل

Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases

In this paper, we developed a diagnosis model based on support vector machines (SVM) with a novel hybrid feature selection method to diagnose erythemato-squamous diseases. Our proposed hybrid feature selection method, named improved F -score and Sequential Forward Search (IFSFS), combines the advantages of filter and wrapper methods to select the optimal feature subset from the original feature...

متن کامل

Genetic algorithm wrapped Bayesian network feature selection applied to differential diagnosis of erythemato-squamous diseases

a r t i c l e i n f o a b s t r a c t This paper presents a new method for differential diagnosis of erythemato-squamous diseases based on Genetic Algorithm (GA) wrapped Bayesian Network (BN) Feature Selection (FS). With this aim, a GA based FS algorithm combined in parallel with a BN classifier is proposed. Basically, erythemato-squamous dataset contains six dermatological diseases defined wit...

متن کامل

Application of Machine Learning Techniques to Differential Diagnosis of Erythemato-Squamous Diseases

This paper is about the implementation of a visual tool for Differential Diagnosis of Erythemato-Squamous Diseases based on the classification algorithms; Nearest Neighbor Classifier (NN), Naive Bayesian Classifier using Normal Distribution (NBC) and Voting Feature Intervals-5 (VFI5). This tool enables the doctors to differentiate six types of ErythematoSquamous Diseases using clinical and hist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014